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1 Introduction

This report describes the activities during the period of 28 July, 1994 to 27 July,
1995, the second year of our current three-year effort. The primary focus of this work
has been change detection and site model updating. Methods have been developed for
detecting changes to fixed structures, such as buildings, and we have studied how
they may be modified to function with large mobile objects, such as airplanes. We
have continued to develop automated methods for building detection and description,
using either monocular or multiple images. These techniques are needed for auto-
mated site model construction and for model updating. We have in addition developed
a method for interacting with the automatic site modeling system that requires min-
imal interaction from a human user. These projects are briefly described below; de-
tails are given in the following sections.

1.1 Change Detection

Figure 1.1 shows a flowchart of the complete change detection system. It con-
tains five major steps:

e Site Model to Image Registration: The first step in change detection is to regis-
ter the new image(s) to the model(s) contained in the site folder. The system has
some capability for performing coarse registration, however, this information is
expected to be available from other modules being developed by other contrac-
tors under the RADIUS program. The system uses feature matching [1] to com-
pensate globally for translational errors and brings the site model into close
correspondence with the observed image.

e Site Model Validation: This step verifies the presence of the model objects in
the image. A confidence value is computed for each object in the model based on
the match information from the previous step. Lower confidence values are like-
ly to represent possible changes to the objects.

e Change Detection: In this step we analyze, in more detail, possible changes in
the site indicated in the previous step, and determine if the missing correspon-
dences can be explained by techniques that draw attention to significant struc-
tures in the image that are not explained by the existing model. The task of
finding objects in the image that are not in the model is more difficult, and will
require use of perceptual grouping operations. Currently the system can detect
missing buildings and changes in dimensions.
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* Site Model Updating: In this step the changes are modeled and incorporated in
the new site model.

* Event Analysis: In this step the structures indicated by the change detection
processes are analyzed in detail. This step requires the development of automat-
ed or semi-automated site modeling techniques.
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Figure 1.1 Flowchart of change detection system.

Our previous annual report [2] and [3] gave details on the development of a val-
idation system that included fine registration followed by a simple object-by-object
verification scheme. The scheme only measured validation by counting the number
of object elements matched to image features. During the past year we have contin-
ued testing the model registration and validation system. We have made improve-
ments in the validation technique and developed a system to perform preliminary
change detection in building structures. A new validation process was incorporated
to handle occlusion of objects by other objects, and to calculate confidence values as-
sociated with the validation of each object in the model. The confidence values are the
result of analyzing the matching elements between the model and the image, and give
the initial “clues” of where changes might have occurred. Low confidence values, for
instance, may indicate a missing building, may reflect inaccuracies in the model, may
result from coincidental alignments, or may indicate actual changes to the structures.
Details are given in Section 2. This system, which uses the fast block interpolation
projection (FBIP) camera model, is written in LISP (LISt Processor) and runs under
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the Radius Common Development Environment (RCDE) [4]. It has been tested favor-
ably with operational imagery at SRI International.

The validation system has been tested for the purpose of verifying the presence
of aircraft at a site. The suggested method involves the derivation of simple aircraft
models from one or more images, rather than using CAD models. Preliminary results
are shown using images of camouflaged aircraft. These results assume that the pose
of the aircraft and the sun angles are known a priori. Details are given in Section 3.

1.2 Automated Building Detection and Description

We have continued the work in automatic building detection and description.
This ability is needed for reliable change detection and site model updating, and is
useful for initial site model construction. Two systems are under development: one
uses a single intensity image and another uses multiple images. Itis, of course, easier
to detect and describe buildings using multiple images, however, the ability to at least
reliably detect buildings from a single image is needed during the change detection
process.

Good progress has been made on both systems. The monocular system now uses
both shadows and walls for verification of a building, and for estimating heights. It
has been tested extensively on the modelboard images with good results. These are
presented in Section 4. We expect to test with the newly available Fort Hood, Texas
images in future work. The system using multiple images is in the earlier stages of
development. The system uses a hierarchical grouping and matching methodology.
The preliminary results are encouraging and we believe this method will lead to ro-
bust and reliable building detection and description. This system is described in Sec-
tion 6.

1.3 Interaction with Automatic Model Construction Systems

Another area of progress, described in Section 5, deals with user interaction with
the automated systems to assist the building detection systems in completion of the
modeling task. The general idea consists of identifying areas, or cases, where the au-
tomated systems fail. The user, by means of a graphical interface, directs the auto-
mated systems to make use of the partial results derived automatically. With user
guidance, the automated system attemps to complete the task of model construction
with minimal user input. This system has been tested in conjunction with our monoc-
ular building detection system with encouraging results.

Second Annual Technical Report 3
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2 Change Detection in Permanent
Structures

We have continued the development of a validation mechanism that implements
the first step towards a system for detecting changes in images of aerial scenes. Val-
idation seeks to confirm the presence of model objects in the image. An overview of
the change detection process was given in Section 1. The following provides details of
the various steps.

2.1 Site Model to Image Registration

The first step is to register the site model to an image. Normally, coarse regis-
tration should be available from other modules of the RADIUS program (such as a
“Model Supported Positioning” module). Our system has the capability to correct
translational errors. Our registration method ([2],[3]) consists of the following tasks:

e Calculation of misregistration offsets and compensation for translational er-
TorS,

e Establishment of correspondences between the elements of objects in the
model, and the supporting features extracted from the image.

The first task is carried out by a matching technique [1] that uses line segments
derived from the site model objects, and line segments [5] approximated from the edg-
es extracted [6] from the image. The second task uses the registration offsets to select
the matching pairs (model segment, image segment) that bring the model objects and
the image features into correspondence.

Figure 2.1 shows an example of the registration step in the system. The site
model shown in Figure 2.1a is projected according to the camera model associated
with the image. The peak in the matcher accumulator array (Figure 2.1b) gives the
global misregistration error. The fine-registered model (Figure 2.1c) is then used to
establish the context needed for further processing. Details may be found in [2] or [3].

2.2 Model Validation

The purpose of model validation is to verify that model objects are present in the
image. The system uses the correspondences established in the registration step to
assign a confidence value to each object in the model to reflect its image support, and
to help select object candidates to analyze likely changes in the site. Some features
will be missing because of viewing conditions. These, however, can be predicted and

Second Annual Technical Report 5
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Figure 2.1 Refined model-to-image registration.

explained from the site model itself. The system, at this stage, also deals with ambi-
guities, such as multiple matches and coincidental alignments.

The confidence values derived are based on the following measures:

Object Presence

Each object model consists of a number of edges representing its boundaries.
Object presence denotes how many of these boundaries have a corresponding segment
or segments in the image (see Figure 2.2). Currently, object presence is measured as
a percentage of model edges matched to correspond to image edges. This quantity
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takes into account only visible elements, from the particular viewpoint of the image.
Both self-occlusion and occlusion by other objects are determined using the range im-
age derived from the model itself, thus non-visible elements are not counted.

Object presence is calculated separately for roof elements, vertical elements,
and base elements to allow us to study the relative importance of these components
as a function of the viewpoint. Near nadir views, for example, may highlight the con-
tribution of the roof elements. These weights may be set by annotations in the site
model; currently, they are given equal weight.

Object Coverage

Object coverage is equivalent to length-weighted object presence. It denotes the
percentage of the perimeters of the matched boundaries of the faces of the objects.
These quantities represent the amount of boundary evidence detected in the image in
support of the validation of a model object. Figure 2.2a shows an object with all sides
represented by small supports. Figure 2.2b shows the opposite; a few sides represent-
ed with good support. Object coverage measurements take into account occlusion,
and are calculated separately for roof, vertical, and base elements.

L~ - - - -
e —/ :
m—- - - I' ’
@ Good presence ®) Poor presence
Poor coverage Good coverage

Figure 2.2 Presence and coverage.

Shadow Presence

Shadow presence is inferred from the models and verified in the image. The
model information is used to project the shadow boundaries, taking into account their
visibility. Note that in situations where reasonable object matches (correspondences)
are not found, the absence of shadows helps confirm the absence of the building, but
the presence of shadows does not guarantee the presence of a building. The final in-
terpretation is the subject of our current and future work.

The number of shadow elements (boundaries and junctions) derived from the
model (see Figure 2.3) is compared with the number of potential shadow elements ex-
tracted from the image to give the shadow presence measure. The image segments
are labelled as potential shadow segments by noting the consistency of the “dark” side
of the segment with respect to the direction of illumination. Segments oriented par-
allel to the direction of illumination also correspond to possible shadow lines cast by

Second Annual Technical Report 7



vertical object edges. Shadow junctions are detected similarly. The L-junctions
formed (allowing for gaps) by potential shadow lines are labeled potential shadow
junctions. Details on the shadow labeling of segments and junctions may be found in
[7] and [8].

Shadow Junctions

Shadow cast by
vertical edges

Other
shadows

Figure 2.3 Shadows cast by “cubic” building.

Object presence and coverage, and shadow presence are currently combined lin-
early to give a confidence value interpreted as follows as follows:

Table 1: Confidence Levels.

Percent >75% > 50% > 40% >25% < 25%

Confidence Very high High | Medium | Low | Verylow
Color code Green Blue Yellow Pink Red

The interpretation of these confidence values drives the change detection proce-
dures that follow. In this report, we describe our progress in dealing with building
structures only. Figure 2.4 shows an example of the registration/validation step ap-
plied to one of the modelboard 1 images. The colors indicate the confidence level as-
sociated with each building structure.

2.3 Change Detection

The confidence values computed in the previous step give the first indication, for
each object, of potential changes in the site. High values indicate close correspon-
dence between model and image. Low values signify possible changes to the site. In
some cases, however, high values are caused by multiple matches and other ambigu-
ities that may exaggerate or reduce image support for an object. These conditions,
however, are isolated. In order to distinguish between apparent and actual changes
we first perform an analysis of possible ambiguities and correct the confidence values
appropriately. Details are given in the following.

8 Second Annual Technical Report



Figure 2.4 Validation results and color-coded confidence levels.
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2.3.1 Analysis of Ambiguities

Multiple and Insufficient Matches

The model-to-image matcher in the system corresponds each model element
with one or more image elements. This is necessary in order to deal with expected
fragmentation in the image elements. Fragmentation is caused by inadequacies in
the feature extraction process and due to actual image content, such as trees occlud-
ing buildings, or road boundaries and shadows. This may result in some individual
model segments being associated with multiple image building boundaries (Figure
2.5) or with boundaries of other nearby objects. This condition is detected by observ-
ing the object coverage measures described above and is handled in the following
manner: If the multiple matches include colinear image segments, these are currently
taken together. If the multiple matches involve parallel image segments, the one with
the closest fit to the model segment is taken to represent the matched boundary (see
example below.)

D

7
.

(a) Model segments (b) Image segments

Figure 2.5 Model to image correspondence.

In some cases complex objects are modeled in terms of simpler shapes, thus, may
include some elements that do not correspond to physical elements. Figure 2.6 shows
an L-shaped building that has been modeled by two rectangle parallelepipeds. The
thick lines on the building model do not correspond to physical boundaries, and are
impossible to match. The lack of image support results in lower confidence. Figure
2.7 shows two buildings that are likely to be undermodeled because of their complex-
ity. These are likely to require additional search strategies that are designed to look
for additional evidence, such as a large number of vertical or horizontal boundaries.
The system is not currently capable of determining these conditions, thus, the confi-
dence values may be underestimated. It is assumed that some of these conditions
may require annotations in the site model to help the system adjust the weights used
to determine confidence values.

Second Annual Technical Report 11
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(a) Building (b) Building Model (c) Image Segments

Figure 2.6 Impossible match because of overmodeling.

o &

Figure 2.7 Complex buildings may be undermodeled.

Next, an example from the modelboard is used to illustrate our previous discus-
sion, and helps explain the remaining conditions that the system can handle current-
ly. Figure 2.8a shows the model segments. The model elements that might have
changed are shown as thick lines. A number of possible changes are denoted by circles
on the structures. The corresponding image segments are shown as thick lines in
Figure 2.8b. In Figure 2.9, the thick black and white lines denote ambiguous multiple
matches. After resolution of the ambiguity, the white lines denote the image seg-
ments chosen to correspond to model segments.

Coincidental Alignments

Some of the multiple matches described in the previous section are caused by co-
incidental alignments of buildings with other structures. Some of these include roads,
and adjacent objects. Nearby objects and shadows sometimes result in image features
that have a larger extent than that predicted by the model features. These are ex-
plained by examining nearby shadows with knowledge of the direction of illumina-
tion, and by examining adjacent structures.

The building on the top right of Figure 2.9 has a vertical edge aligned with the
shadow cast by the same edge. Both edges in the image, the vertical edge and its

12 Second Annual Technical Report
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shadow are good candidates to match the model’s vertical edge. The multiple match
may indicate an increase in height, but in this case, the situation is identified correct-
ly as a coincidental alignment. The white portion of the edge is then determined to
be the portion corresponding to the model edge.

Figure 2.9 Amblgmty because of multlple matches and alignment.

Coincidental alignments caused by nearby and adjacent structures are deter-
mined by locating adjacent structures that help explain a possible change. The small
building on the top of Figure 2.9 helps illustrate this point. The model roof and base
edges are matched to much longer lines in the image. Figure 2.10 shows two build-
ings (white boundaries) that were found to explain the situation detected, thus dis-
missing the possibility of determining a change in the small building’s (black
boundaries) horizontal dimensions.

In this particular example, all possible changes are explained by resolving am-
biguities in the matching process, and by detecting coincidental alignments with
shadows or nearby structures, therefore, no changes are reported.

2.3.2 Changes in the Site

Changed Objects

Changes in the dimensions of the structures located in the image that are not
caused by errors or coincidental alignment signify real change. The changes in di-
mensions detected by the current system are preliminary in the sense that they are
not fully described. The system reports the possibility of change without a full de-
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Figure 2.10 Adjacent buildings may introduce ambiguity.

scription. A final determination of change requires that the entire object geometry be
analyzed for consistency in view of the possible change. This is one of the subjects of
our future work.

Figure 2.11 shows an example, also from the modelboard image set. The models
of the two buildings were altered by hand (reduced in size) to the dimensions illus-
trated by the thin white lines. The matching and fine registration step correctly reg-
isters the modified models to the structures in the image. The thick white lines are
the image segments that matched the corresponding model edges. The differences
then denote the extent of the change found at this preliminary stage.

Figure 2.12 shows a building wing that has been added to an existing structure.
The portion of the building in the model is correctly registered to the image. The two
thick white lines denote the extent of the match. Because the object presence mea-
sure for the roof of this structure indicates that all four sides of the current model
were matched, the change is labeled “added” wing. ’

Missing Buildings

Figure 2.13 shows a large number of object models (in white) added by hand to
the site model. The size and location of these objects were determined randomly and
added deliberately to the site model to test for “missing” object capability. Note that
in spite of the added information, the “legitimate” models are correctly registered
with the image, as shown by the black lines. The low confidence values calculated for
the added building models indicate that there is no image evidence to support the
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Figure 2.12 Added “wing” is reported in this case.
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presence of a building at that location. The two possible causes for this condition are
that either the model is incorrect or the building has been removed or destroyed (as-
suming that images are of sufficient quality). Resolving these ambiguities may re-
quire examination of these locations in other images.

T

" s

Figure 2.13 Missing buildings because of large
change or model error.

2.4 Technology Transfer and Future Work

The model validation software has been ported to SRI in Menlo Park, CA for
testing on operational imagery. Preliminary results are promising.

The current system operates in the 2-D domain of projected model structures
onto the image viewpoint. We plan to explore the use of the verification mechanism
by matching 3-D model features to 3-D features from multiple images or from a range
sensor such as IFSAR. Our immediate work will concentrate in giving detailed de-
scriptions of detected changes to building structures, and to other structures of a per-
manent nature, such as roads and other transportation network objects.

One important type of site change is the introduction of new structures. We plan
to incorporate techniques to detect evidence of construction. Together with our capa-
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bilities to construct models automatically, we can then proceed to suggest new addi-
tions to the site model.
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3 Verification of Aircraft Presence

Verifying the presence of aircraft or other mobile objects in expected locations is
important for several analysis tasks. This section presents our progress towards a
recognition technique based on low-level matching between segments in the images
and segments of the projection of a 3-D model of the aircraft. The model is constructed
manually from one or more views of the scene. The matching technique is the same
as that used for fine registration of the site model with a new image (described in the
previous section). The quality of the match is evaluated to determine verified pres-
ence.

Aircraft recognition techniques have been reported using a variety of methods.
See Subhoved et. al. [9] for example. This elaborate system claims to be capable of
detecting aircraft in real-world scenarios that include haze, clutter, and shadows.
This system has been reported to be under development and uses a hierarchy of air-
craft, models. The model database includes generic aircraft, aircraft classes, specific
aircraft and detailed aspects of specific aircraft. The aircraft models consist of two
types: edge-based approximations of CAD models, and generalized cylinder-based
models. The system we present here “recognizes” aircraft by matching 2-D projec-
tions of simple user-derived 3-D models to linear features extracted from the image.
In our system, an aircraft is decomposed into its main discernible components: two
wings, with possibly two or more engines, the fuselage, two rear wings, and a tail;
each of these is described in terms of geometric properties.

The methodology consists of grouping primitives extracted from the image into
sets that resemble the chosen geometric properties. These groups represent hypoth-
eses of instances of the objects in the image that are verified by an evaluation criteria.
Our approach deals with the expected fragmentation of features caused by poor image
quality, cloud cover, noise, clutter, and camouflage. A typical example is shown in
Figure 3.1, the image of a camouflaged C-130 transport (a), and the edges [6] extract-
ed from the image (b); it clearly demonstrates the difficulties.

(a) Image (b) Line segments
Figure 3.1 Camouflaged C-130 aircraft.
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In some cases, 3-D models of aircraft may be available. We assume, however,
that in general they are not, and suggest a mechanism to derive a model that is suf-
ficient for the task. The use of simplified 3-D models of aircraft derived manually
from the images available is suggested. Verification can then proceed similarly as it
does for buildings.

It is assumed that a camera model is available, and that the sun angles are
known in order to make use of the shadow clues available. The system does not cur-
rently have a mechanism to estimate the pose, or a range of aircraft poses. To carry
out the experiments, the orientation and the position of the aircraft are specified by
selecting two points on the aircraft, such as the two extremities of the wing’s leading
edge. Given the pose of the aircraft in the image, the model segments are projected
onto the image to match line segments extracted from the image.

The system is written in LISP and runs under the RCDE [4] on a SUN worksta-
tion. The images and camera models used for preliminary testing were supplied by
Dr. Joseph Mundy of General Electric Corp.

3.1 Construction of a Simplified Aircraft Model

The model is extracted by hand directly from one or more images. Two orthogo-
nal 2-D planes are constructed; one outlining the wings and the fuselage, and the oth-
er, representing the tail (Figure 3.2).

— .

Top view side view

Figure 3.2 3-D simplified model.

The next step is to use the camera model to project the outlines of the two planes
into two perpendicular planes in a 3-D coordinate system, using the known camera
model. The ambiguity on the z coordinate is resolved by assuming that the aircraft is
on the ground, thus, the wings are parallel to the ground plane and are at a given
height.
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3.2 Model Projection
3.2.1 Translation and Rotation

The system assumes that the aircraft pose (orientation) in the image is known
in order to project the model onto the image (see Figure 3.3). In order to carry out the
experiments, the orientation and position of the aircraft are specified by selecting, by
hand, two points on the aircraft, typically the two extremities of the wing’s leading
edge.

tail

wings and
fuselage

Figure 3.3 Projected 2-D outlines.

3.2.2 Shadow Processing

The shadows cast by 3-D objects are strong clues to the presence of objects, and
we have used them extensively in the past. The shadow clues become significant, in
particular, when the object appearance has been altered by camouflage. Shadow ele-
ments, as described in the previous section for buildings, are calculated from the air-
craft model using the camera parameters and the sun angles. Occluded shadows are
determined and removed by a simple method (Figure 3.4): The model consists of
closed outlines; they form closed general polygons. Occluded segments on the outlines
belong to the intersection of those polygons.

aircraft

Figure 3.4 An aircraft model and its shadow.
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3.3 Matching Algorithm

We use the same matching technique as the one described for building struc-
tures in Section 2. Additional details are given in [1], [2], and [3]. After matching,
the strength of the match is verified. The following criteria is used: If the rate of
matched segments between the model and the image is above 90 percent, then the
model is validated at this position and orientation. Otherwise, further validation and
evaluation are required. The next section gives the details.

3.4 Validation and Evaluation

The matching algorithm is a global procedure and finds the best translation vec-
tor between the model and the image segments regardless of the image content. It is
not sufficient, therefore, to require a certain percentage of matched model segments
to say that the model is validated and the aircraft recognized. We analyze the results
of the match at a higher level to determine the accuracy of the recognition of the mod-
el.

The criteria to determine the presence of an aircraft is as follows: the matched
image segments have to be well distributed geometrically over the model, i.e., each
part of the aircraft wings, tail, etc., must have approximately the same proportion of
matched segments in terms of arc length. This criteria is applied separately to the
aircraft segments and to the shadow segments. If either the aircraft or its shadow is
validated, then we say that the model is verified. Typically the shadows give a better
rate of recognition when the aircraft has camouflage applied.

Method:

First, a binary function of the matched segments between image and model
along the arc length of the model is computed: the model outline segments are
scanned and each corresponding matched image segment is projected onto it. The ab-
scissa maximum is the total arc length of the 2-D model. Then we scale this function
modulo 2% in order to map this function onto a circle of radius 1, centered at (0,0).
Each point belonging to the perimeter is a matched pixel (see Figure 3.5).

pmm-

J : center of gravity

( ’ (0.(5)

Figure 3.5 Circular distribution of matched pixels.
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Second, we compute the moments of inertia of the resulting fragmented “wheel.”
We compare the distribution of matching pixels along the perimeter of this circle to
the distribution of mass on a wheel where each point belonging to the perimeter has
a weight contribution of 1.

We determine if this “wheel” is well balanced by computing second order mo-
ments of distribution:

2
may = 2%~ %)
¢ 2
mgy = 2(¥;=7¢)
C
myy = %(xi‘xo)‘(yi“yo)
21
x0=2xi= Zr-cosa
Y 0 re [0,1]

211
Yo=Y = Y r-sina
C 0

The Hessian matrix represents the distribution of the points along the circle.
- (MMl _ M 0
My My |04
The two conjugate eigenvalues (A; and i) of H give the two parameters of the
distribution:
The eccentricity of the wheel is given by:

eccentricity = }‘1/7“2

The number of matched pixels (modulo 27) is given by:

’

Length of match = )»1 + 7‘2
=Tr(H)

Finally, the displacement of the center of gravity gives the spread of matched
pixels on the aircraft’s outline:

. 2 2
displacement = (xO +Y0 )
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The three parameters: eccentricity (< 7%), normalized length of match (> 50%)
and displacement of the center of gravity (< 20%), are used to validate the model. Low
eccentricities compensate for shorter lengths of match.

Figure 3.6 shows a typical result. Both the aircraft and its shadow are well represent-
ed. Figure 3.7 shows an example of a “missing” aircraft.

3.5 Conclusion and Future Work

This method can be used to verify the presence of an aircraft at a given position,
or a number aircraft in an image, if they have the same pose. An additional effort is
required to complete automation of the process to include estimation of pose or a
range of poses. Derivation of model projections from full CAD models may be incor-
porated. The use of full CAD models, however, is non-trivial as the models may be too
detailed. We may need to process these with a “visibility” and a “sensor” model.
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Figure 3.6 True positive example.
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4 Building Detection from a Single
View

In this section, we describe recent progress in automated detection and descrip-
tion of buildings from a single view. There are two major difficulties in inferring 3-D
shape descriptions from a single intensity image. First of all, given an image, the sys-
tem must know how to find and separate objects from the background. This is the
well-known “figure/ground” problem. For several reasons, the low-level process usu-
ally produces highly fragmented segments which makes the problem even worse. The
other difficulty is to reconstruct 3-D from 2-D, because no direct 3-D information is
provided by a single intensity image though the heights of the buildings can be esti-
mated from the shadow cast by them, and by the visible walls under certain assump-
tions.

Use of an oblique view can provide more 3-D cues than the nadir view aerial im-
age, but many additional difficulties arise in the analysis process. First, the contrast
between the roofs and the walls may be lower than the contrast between the roofs and
the ground causing boundaries to be even more fragmented. Second, small struc-
tures, such as windows and doors on walls, tend to interfere with the completeness of
roof boundaries. Third, the projected shape of a building changes with the change of
viewpoint. Fourth, the shadow of a building, which we use to verify roof hypotheses,
may be occluded by the building itself.

In previous work ([2],[7]) we described a system that used a perceptual grouping
technique to make roof hypotheses from the edges detected from the image. A selec-
tion process selects good hypotheses for verification, and shadow evidence is used to
verify the selected hypotheses. The 3-D information is inferred from the shadow evi-
dence.

A similar approach is used in the current system, however each step requires
many changes to accommodate the problems introduced by the oblique view images.
For the hypotheses generation process, the skewness of roof hypotheses has to be han-
dled according to the viewpoints, and the selection process can make use of the 3-D
cues such as orthogonal trihedral vertices (OTV). In addition to the shadow evidence,
wall evidence is used to verify the hypotheses. The use of both shadow and wall evi-
dence makes the verification process generate more assured results and make the sys-
tem robust. The corresponding wall evidence of a building also provides another way
to infer the 3-D information of the building.
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This system makes the following assumptions: that buildings are rectilinear,
that the roofs and the surface on which the shadow fall are flat, and that the viewing
geometry (camera model) is known. It has been tested on several examples of the
modelboard images. Testing has begun on the newly available Fort Hood images.
Some results and performance evaluation are given in the following.

4.1 Generation of Hypotheses

The system uses an edge detector to extract linear intensity features from the
image. Next, a perceptual grouping process is used to generate roof hypotheses by
constructing a feature hierarchy from the linear features.

The feature hierarchy, which includes linear, parallel, U-contour (portions of
parallelogram) and parallelogram features, encodes the structural relationships spe-
cific to oblique views of rectangular shapes, presumably corresponding to the visible
flat roof surfaces. A perceptual grouping process is used to group low-level features
into high-level features to form the feature hierarchy where linear features are
grouped into parallel features, linear features and parallel features are grouped into
U-contour features, and U-contour features are grouped into parallelogram features
which are the roof hypotheses.

The formation of parallelogram hypotheses is constrained by the following equa-
tion:

B = atan(p,v)

sinz(a +0)

2
= cos (a+8)cos(y)+ s (1)

where

v = sin(o+8)cos(o + 9)(cOS(Y) -

cosl(y))

Angles a and B are shown in Figure 4.1. 0 is the “swing” angle and yis the “tilt”
angle; these are derivable from a camera model.

Figure 4.1 Angle constraint of roof hypotheses.

4.2 Selection of Hypotheses

A selection process is applied to choose hypotheses having strong evidence of
support and having minimum conflict among them. Based on the local and global
supporting evidence of hypotheses, a rule-based selection process selects promising
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hypotheses for verification. This process greatly decreases the number of hypotheses
to be verified, therefore reduces the run time of the time-consuming verification pro-
cess.

The system uses two kinds of criteria: local selection criteria and global se-
lection criteria. Local selection criteria determine whether or not a parallelogram
is “good” based on the local supporting evidence. Only good parallelograms are re-
tained for global selection. It is possible that some of the good parallelograms re-
tained after the local selection are mutually contained, duplicated or overlapped with
some other good parallelograms. Global selection criteria select the best consistent
parallelograms from good parallelograms.

4.3 Verification of Hypotheses

The purpose of verification is to validate the selected hypotheses to correspond
to buildings. For a roof hypothesis, the existence of shadow evidence or wall evidence
strongly suggests that the roof hypothesis is a part of a 3-D structure. Our validation
step, therefore, includes a shadow verification process and a wall verification
process. A hypothesis could be validated by either shadow and/or wall evidence. Al-
so, this evidence provides the system with the 3-D information needed to create a 3-
D model of the structures.

4.3.1 Shadow Verification Process

The use of shadow evidence to verify hypotheses is more complicated in oblique
views than in nadir views, for the shadow may be occluded by the building itself in
oblique view images. See Figure 4.2.

illumination
direction

Figure 4.2 Search for shadow evidence.

’

The shadow verification process tries to establish the correspondences between
shadow casting elements and shadows cast, and uses these correspondences to verify
a hypothesis. We assume that the ground surface in the immediate neighborhood of
the structure is fairly flat and level. The shadow casting elements are given by the
sides and junctions of the selected roof hypotheses. The shadow boundaries are
searched for among the lines and junctions extracted from the image.

There are a number of difficulties, however, that prevent the accurate establish-
ment of correspondences. Building sides are usually surrounded by a variety of ob-
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jects, such as loading ramps and docks, grass areas and sidewalks, trees, plants and
shrubs, vehicles, and light and dark areas of various materials. Occlusion of the shad-
ow by the building itself or by nearby buildings may make the shadow region irregu-
lar and make the shadow evidence difficult to extract. To deal with these problems
we have adopted some geometric and projective constraints and special shadow fea-
tures.

The potential shadow evidence is extracted from image elements and knowledge
of the sun angles: Lines parallel to the projected sun rays in the image may represent
potential shadow lines cast by vertical edges of 3-D structures; lines having their dark
side on the side of the illumination source are potential shadow lines. Junctions
among the potential shadow lines are potential shadow junctions, and neighborhood
pixel statistics give relative brightness.

Given the sun and viewpoint angles, the projected shadow region in 2-D can be
delineated with appropriate removal of the self occluded shadow region for a given
building height. The shadow verification process collects all potential shadow evi-
dence along the expected shadow boundary. For every possible building height, a set
of corresponding shadow evidence is collected for evaluation. The range of possible
building heights is determined by the knowledge of the maximum building height in
the scene. Figure 4.2 shows how the system searches for shadow evidence on several
possible building heights.

The shadow evidence associated with each possible building height is evaluated
and a score is computed by a weighted sum of the evidence of shadow lines cast by
roof, shadow lines cast by vertical lines, shadow junctions and the shadow region sta-
tistics.

4.3.2 Wall Verification Process

Some of the walls of a building should, in general, be visible in oblique view im-
ages. Finding wall boundaries provides evidence for the presence of a building. Given
the viewing angles and a building height, we can estimate the expected wall boundary
for a roof hypothesis. All evidence around the wall boundary is collected and a score
is computed for the wall evidence.

Given a roof hypothesis and the viewing angles, the system determines which
sides should be visible. The swing angle gives the vertical direction from which build-
ing sides are hypothesized. The wall boundary is delineated for a given building
height and a search process is activated to collect all evidence around the delineated
wall boundary. Figure 4.2 shows the search of wall evidence for several possible build-
ing heights.

The estimate of the wall evidence is a weighted sum of the evidence for ground-
boundary, vertical-boundary, and corners.
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Figure 4.3 Search for Wall Evidence.

4.3.3 Combination of Shadow and Wall Evidence

For each building hypothesis, the previous two steps determine a shadow score
and a wall score at every possible building height. The shadow score, S, and the wall
score, W, are combined as follows:

Confidence = S+ W-SxW
where 0<S,W<I1

For each hypothesis, the building height that gives the highest combined score
is considered to be the most likely building height of the hypothesis, and the combined
score is called the confidence value of the hypothesis. If the confidence value of a hy-
pothesis is greater than a given threshold value, the hypothesis is considered verified.

4.4 3-D Description of Buildings

In this system, the shadow and wall evidence is used not only for verification but
for reconstruction of 3-D information (see Figure 4.4). The height of a building can be
computed from the projected shadow width and the sun angles (the direction of illu-
mination, the direction of shadow cast by a vertical line, and the sun incidence angle),
or from the projected wall height and the viewing angles (the swing angle, and the tilt
angle).

shadow width

direction of shadow
cast by vertical line

direction of illumination

Figure 4.4 Three-dimensional model.

After the verification process, every verified hypothesis will have a height asso-
ciated with it. From the height of the hypothesis the system can generate a descrip-
tion of the shape of the structure and derive a 3-D model.
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4.5 Results and Evaluation

The system has been tested on a number of modelboard images. Some pictorial
examples and a summary of results is given here. Figure 4.5 shows the result on an
image (J19) from the RADIUS model board set containing a large number of struc-
tures (about 48). The system forms 2,247 hypotheses and selects 106. Of these, 29
are verified and all but two are correct (in conformity with the human judgement).
The false positives are from very small and low contrast structures. The missing
structures also are mostly very small and of very low contrast. We feel that the re-
sults are very good given the complexity of the image. Our system computes a confi-
dence measure (not shown graphically), and the two false positives are of low
confidence. The image is 1306x1034 pixels, and the processing time is about 20 min-
utes on a SUN Sparcstation 20.

5

i

4.5.1 Detection Evaluation

A e

Figure 4.5

' o~

Model board (J19).

There are many ways to measure the quality of the results [11][18]. We summa-
rize performance on several images in Table 1 using the following four measurements:

® Detection Percentage = 100 x TP/ (TP + TN)
* Branch Factor = FP /(TP + FP)

¢ Correct Building Pixels Percentage

* Correct Background Pixels Percentage.
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The first two measurements are calculated by making a comparison of the man-
ually detected buildings and the automated results [11], where True Positive (TP) is
a building detected by both the human and program, False Positive (FP) is a building
detected by the program but not human, and True Negative (TN) is a building detect-
ed by human and not the program.

The other two measurements are calculated as follows: Using the spatial extent
of the buildings detected, we label every pixel in the image as either a building pixel
or a background pixel [12]. “Correct Building Pixels”, expressed as a percentage, is
the ratio of the number of pixels correctly labeled as building pixels and the number
of actual building pixels in the image. A similar measure for the background pixels
is derived from the ratio the number of pixels correctly labeled as background pixels
and the number of actual background pixels in the image.

Table 2: Detection Evaluation.

Detcion | Branh | puiing | Backgronn
Pixels Pixels

J2 59.1% 0.138 86.4% 99.6%

I3 87.5% 0.028 96.5% 99.5%

J4 64.6% 0.162 90.6% 94.1%

J5 57.8% 0.263 68.3% 96.4%

J6 62.5% 0.143 67.8% 96.9%

J19 54.2% 0.069 80.0% 99.3%

Table 2 summarizes the evaluation of results of the system on six model board
images, all of the same site as shown in Figure 4.5, however, taken from different
viewpoints and under different illumination conditions.

Note that the system gives rather consistent results for most images, except for
J3, which corresponds to a nadir view. Also note that the measure for correct building
pixels is considerably higher than for detection percentage indicating that the missed
buildings are rather small. The number for correct background pixels is even higher
indicating that false positives are rare and correspond to very small structures. We
find that most errors of our system are associated with buildings with dark roofs
where the boundary between the roof and the shadow is difficult to detect.

4.5.2 Confidence Evaluation

The system associates a confidence value with each hypothesis which can fur-
ther be used to evaluate the performance of the system and guide a user on how to
interpret the results. Figure 4.6 shows a histogram of the number of true and false
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positives corresponding to certain confidence levels (ranging between 50 and 100, in
increments of 5). Note that there are few false positives with high confidence values.
In fact, if we set a confidence threshold of 75, we detect no false positives at all, and
more than half of the true positives also are above this threshold. This indicates that
the confidence values can be used profitably by an end-user or by another program.
Results given with high confidence can be taken to be reliable and further attention
for improving the results can focus on the lower confidence results, if necessary. We
believe that this self-evaluation capability will greatly ease the use of our automatic
tool in an interactive environment.

no. of true positive
]

no. of false positive

.
confidence values confidence values

Figure 4.6 Distribution of confidence values.

Confidence analysis gives us a tool for evaluating the effectiveness of using var-
ious kinds of evidence. For example, on the J19 image shown in Figure 4.5, our sys-
tem finds more true positives when the wall evidence is used. Moreover, if the wall
evidence is used, the confidence of the correct hypotheses is increased substantially
as shown in Figure 4.6 (the histogram of the true positives is skewed towards the
higher confidence values). Now, if we set a threshold on the confidence values, the
false positives can be eliminated while keeping most of the true positives. .

no. of true positive
no. of false positive
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(b) Use Only Shadow Evidence in Verification

Figure 4.7 Advantage of using wall evidence
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4.6 Conclusions and Future Work

We have described an automatic system for detection and description of build-
ings from oblique aerial images. We believe that the results show that the system
gives good performance, particularly on large buildings with reasonable contrast and
shadows. We believe that the confidence measures offer a tool that can help use the
results even when they are not perfect. In future work, we plan to test extensively on
real data, such as the images of the Fort Hood site. We plan to port the system to the
RADIUS contractor for further evaluation and integration into the RTS.
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5 Including Interaction in an
Automated Modeling System

The results of the automatic building detection system described in the previous
section ([2],[7]) are good, however, not perfect. We have developed tools for correcting
some of the results by an interactive process such that manual intervention is mini-
mized.

A variety of interactive systems have been built for site model construction ({4]
[13]). The amount of interaction required of the human operator is typically of two
kinds: Some systems require almost complete manual construction with an operator
locating all the significant features. Others require the operator to select parametric
models or rough outlines which are then fit to image data under operator control. In
all such cases, the machine’s task is limited to that of bookkeeping, simple geometric
calculations, or some form of error minimization. No perceptual capability of the ma-
chine is used; and the operator is required to provide a large number of inputs, in
some cases, very accurately. While such systems can aid in constructing site models
from aerial images, they are quite tedious to use as the number of structures to be ex-
tracted is typically large.

We suggest an alternative strategy for combining the activities of the operator
and the machine by taking advantage of what perceptual abilities a machine does
have. Our goal is to provide a minimum amount of input to the machine and let the
machine make the decisions that it can. Our approach is based on the observation
that the automatic system often works quite reliably under certain conditions, and
the operator should not need to do this work. Also, when the automatic system fails,
it does so because of some salient difficulties. In such cases, the operator may be able
to supply an indication of the difficulty or the desired result which may suffice for the
machine to finish the computation. One such situation is when the building has a
dark roof and the boundary of the roof with the shadow is not detected. In this case,
the automatic system fails to confirm the presence of a building because of the lack of
sufficient evidence. However, simple guidance from the operator, can indicate that a
dark building is present in the vicinity, which suffices for the automated system to
find one on its own.

The methodology allows for more detailed interaction with the system, in stages,
and as necessary. In the worst case, the system reduces to the user having to provide
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all the information as is the case for most manual systems. However, we find this ca-
pability is seldom needed in the system.

The design goals for the system can be summarized as follows:

e The complexity of the interaction process should be minimized, and in the
worst case, should not exceed the complexity of the interaction process required
by a manual system

e The type of information called up in each step should be easy for the user to
determine.

“Easy” information for the user would be qualitative information without the
need of precision, such as answering the question “In the indicated area, is a building
visible but not detected?.” The last requirement also could be stated as: the precision
required by the user should be minimized.

5.1 Interacting with an Automated System

The approach combines aspects of the automatic system [7] with user interac-
tion. Figure 5.1 shows the steps in building detection by the automatic system: The
image (a) contains three buildings. The segments and junctions extracted (b) are used
to form roof hypotheses (¢). Promising hypotheses (d) are selected automatically for
verification as described in [7]. The verified hypotheses (e) and the 3-D model (f) are
computed automatically. After an image is processed automatically, the user interac-
tion with the system starts. The process of interaction can be divided in two parts,
initial interaction and corrective interaction (see Figure 5.2).

Figure 5.1 Automatic building detection.

5.1.1 Initial Interaction (qualitative)

First, the user classifies the detection problem. Classes of problems are, for ex-
ample, dark areas, poor contrast, occluded buildings, occluded shadows, or partly de-
tected L- or T-shaped buildings. This selection helps constrain the search for
candidate hypotheses. While a particular situation may belong to more than one class
of problems, it is unlikely that a correct hypotheses will be rejected as long as the clas-
sification is correct.
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Figure 5.2 Interaction system embedded in the automatic system.

The second qualitative step consists of giving a rough localization of the missing
building. This can be, for example, any point on the roof (it is possible to automate
this step by clustering rejected hypotheses, see below). The initial interaction step re-
sults in the most likely hypothesis and can be established from the set of all hypoth-
eses formed.

14

5.1.2 Corrective Interaction (quantitative)

If the hypothesis established in the first step is (partly) wrong, the user manu-
ally adjusts the sides or corners of the building model. For example, if one roof-side
is incorrect, the user can either drag the line to the desired location or select an un-
derlying image segment that best describes the location of the roof-side. After one or
more adjustments, the verification and parallelogram fitting steps are activated au-
tomatically to recompute the building height and adjust the 3-D model. In the worst
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case, the complexity of interaction is equivalent to that of adjusting the shape of a
building model in a manual system.

5.2 Selecting the Most Likely Hypothesis

The input for this step is the result of the initial interaction and the set of roof
hypotheses generated by perceptual organization. The initial interaction constrains
the search in the set of hypotheses. According to the specified area, a local subset of
hypothesized parallelograms is established, from which the most likely hypothesis,
according to the detection problem, is computed. When no detection problem is spec-
ified and, therefore, no specific knowledge of the scene is known, the system uses the
confidence values assigned to the hypotheses during the selection process of the auto-
matic system.

A set of parallelogram patterns is assigned to each detection problem, which
classifies the parallelogram hypotheses that can occur for a certain problem. An ex-
ample of a pattern is a parallelogram, in which one roof side is wrong by a translation
(because there were no edges detected at this roof side), and all other sides and the
angles are correct (see Figure 5.3). Another example is a complete match of parallel-
ogram and roof sides, which would lead to a correct guess after the initial interaction
step.

This set of patterns has to be established by the designer of the system after an
analysis of system failures.

Choose detection problem
dark arca occluded 1y partly detected
building L- or T-shaped Building

AS E—

Figure 5.3 Classes of problems and their patterns.

Once a class of problems is selected, a probability for being the missed hypothe-
sis is assigned to each parallelogram according to the set of patterns: observation x;
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for each pattern j is collected and transformed to a number w; which can be related to
the associated likelihood. The observation can be represented either as a real num-
ber, an integer, or a boolean.

e
]

—lnP(xi j) for integers/boolean

These formulas are derived by assuming a Gaussian distribution. x;;, o;;0r P(x;)
(mean value, standard deviation or probability of observation x;;) are parameters that
have to be determined either theoretically or empirically.

For each pattern, ¢ > is proportional to the likelihood, so that the most likely
pattern for each parallelogram can be chosen. Similarly, the most likely hypothesis
for the roof of the missing building is selected by comparing the o of the most likely
pattern associated with each parallelogram.

An advantage of this selection method is that the system can --- because of the
selected pattern --- give a prediction, with a certain probability, as to whether a cor-
rective interaction is necessary, and where it has to be made. Also, note that the se-
lection process described here is not suitable for the automatic selection step, because
too many hypotheses would be accepted --- the automated system does not know for
sure that there is a certain building at this location.

Example: dark buildings

Consider the problem class of “dark buildings.” The boundary between the shad-
ow and the roof is typically difficult to detect. The image edges of two sides of the roof
are, at best, only partly visible. Three observations are sufficient to select the best
hypothesis available after the perceptual organization step in the automatic system:
evaluation of the parallelogram-corners, the grayvalue changes at the roof bound-
aries, and the overall average gray level. Two patterns are used, one where all sides
are correct, and one where one or two sides nearby the shadow are incorrect.

It is possible to calculate the roof boundaries and corners that cast the shadow;
the corner formed by these roof sides is likely to be very inaccurate, while the corner
formed by the other two sides (non-shadow casting) is supposed to be rather precise
(otherwise no hypothesis would have been established). The gray-level along the
sides of the roof is supposed to change only on the non-shadow sides. The overall av-
erage gray-level should be low and the variance rather small.

This analysis leads to an easily derivable set of parameters which are used for
the calculation of the most likely hypothesis.
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Figure 5.4 shows an example of a missed dark building: (a) an image, (b) the line
segments and junctions extracted, and (c) the roof hypotheses. After specifying the
detection problem, the image-contrast is enhanced for display, (d). A roof hypothesis
with error ellipses of corners and center of gravity is shown in (e). The 3-D building
model found just after initial interaction is shown in (f).

© | ®
Figure 5.4 An example of a missed dark building.

5.3 Manual Feature Extraction

If the building is still not correctly detected, additional information is needed
and one has to go one step backwards in the hierarchy of the automatic system to ex-
tract new features, such as edges or corners. Two ways of correcting the first hypoth-
esis are offered: first the user can adjust the roof parallelogram by dragging sides with
the mouse, and rotating or translating the whole model. Changes can only be made
within the constraints of the building model, for example, opposite sides remain par-
allel (see Figure 5.5). The extraction of a ground corner or edge (shadow corner or
edge) will determine the building height. These interactions are similar to those with
an entirely manual system.
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Figure 5.5 Manual adjustments - sides and rotation.

Second, one can choose to extract edges and corners and associate them to a part
of the building model. For example, a roof-side of the building can be specified by an
edge extracted in the image. Then this edge is added to the current hypothesis. Our
systems are implemented to run under the RCDE [4]. This environment allows the
use of mouse-sensitive features, thus facilitating user selection and manipulation of
features.

After each corrective interaction the system forms a new parallelogram hypoth-
esis. The system looks for new edges, shadow and wall evidence to support the new
hypothesis, and finally, performs a fitting and verification step. These methods are
the same as those in the automatic system. This important step of verifying the con-
sistence to the constraints proposed in the automatic system can be compared to a fit-
ting process in a computer assisted manual system, though in our system, a fitting is
performed after each interaction. Therefore, it is possible that after a manual correc-
tion of a roof boundary, the wrong building height also corrected automatically.

Without the fitting step the system would perform like a manual system and at
least three interaction steps (two corner adjustments and one correction of the build-
ing height) would be necessary for adjusting the shape of one building model. Rota-
tion and translation as parameters of the position add another two steps.

Note, that the manual feature extraction and the following fitting and verifica-
tion steps can be applied to buildings that are automatically detected, but partially
wrong.

5.4 Results and Extensions
5.4.1 Examples ,

The system was tested on a number of examples provided by the RADIUS pro-
gram (oblique and nadir views). In Figure 5.4, an example of using only initial inter-
action was shown. In Figure 5.6 the building (a) is not correctly detected because of
missing edges, (b). There is no correct parallelogram formed and all roof hypotheses
in (c) are rejected by the automatic system. After the initial interaction, a partly
wrong roof hypothesis, (d), is found, where the shadow casting roof boundary is
missed. The dotted line shows the estimated shadow boundary. The adjustment of
one corner (e) leads to a new hypothesis (f). Note that after the correction of the cor-
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ner, the system automatically found the associated shadow boundary (dotted line) and
it corrected the building height.

(a)
Figure 5.6 Undetected building extracted after one corner correction.
In Figure 5.7 an L-shaped building, (a), is only partly detected, (b). After speci-

fying the problem and giving a rough location of the building, the missing part was
found and fitted without any manual corrections, (c).

0
Figure 5.7 A partly detected L-shaped building easily detected.

(a)

5.4.2 Evaluation

This approach fulfills the requirements proposed earlier: by the initial step,
translation and rotation is usually defined by two “qualitative” interactions. In man-
ual or computer assisted manual systems, the position is given by more or less accu-
rate measurements in the image. The initial step also gives a first guess of the shape
of the building, which might already be the correct hypothesis. In our examples, a cor-
rect hypothesis was always found, when it was generated but rejected by the automat-
ic system.

In nearly all cases, only corrections of the sides and height are necessary because
rotation and position are already given by the initial step. Also, the number of correc-
tion steps in many cases was, at most two (see Table 3). A correction step of the height
can be saved because of the fitting after each step.

Also the precision of the user’s interaction is decreased. The corrective part uses
a fitting process so that high precision is not needed. Furthermore, by adding already
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extracted features to the model, like image edges, the quality of those features is un-

dertaken and included in the hypothesis.

Table 3: Distribution of numbers of required interaction steps

initial interaction

1 corrective
interaction step

2 corrective
interaction steps

>3 correct.
interaction steps

4

9

4

0

5.4.3 Extensions

Currently, the interactive system has knowledge about a limited set of problems

that the automatic system may encounter. Future extensions can extend this set.
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6 Detecting Building Structures
from Multiple Aerial Images

Section 3 described a system for building detection and description from a single
image [7]. While this system shows good performance on many examples, it needs to
rely strongly on presence of detectable shadows or vertical lines. The task can be
made easier if multiple views are available as is likely to be the case for initial site
model construction or detailed analysis of a change detected in monocular analysis.
However, the multiple images are not necessarily taken at the same time: hence im-
aging conditions, including the sun position, the atmospheric conditions, and the en-
vironmental conditions, may be quite different.

Problems of segmentation and 3-D recovery are simplified by presence of multi-
ple views, however do not disappear completely. A simplistic view of multiple view
processing would be that we could first recover a dense 3-D map by matching across
the different views and then segment the desired structures in 3-D. However, this is
rarely possible in stereo processing and is particularly difficult for the problem being
considered here. We cannot directly compute a dense 3-D map of the scene as there
are large homogeneous areas whose interiors can not be matched directly, and we can-
not match intensity values across images as they are not invariant with the changing
viewing conditions. Instead, what we can attempt to dois match features, such as ob-
ject boundaries, that are invariant across the images. However, the set of such fea-
tures will likely be sparse and fragmented and we must group them to infer coherent
objects.

To illustrate the nature of the problem, consider three images of a scene shown
in Figure 6.1, with line segments overlaid. Note that the sides of the buildings that
are visible are not the same in all views and that the shadows cast on the ground are
quite different. The line segments were extracted from the images using an edge de-
tector [6] and LINEAR line finder [5]. Note that not all of these boundaries have cor-
respondences in more than one view. Also, it is unlikely that we can find
unambiguous matches even for those lines that do correspond just by looking at the
lines individually. Many parallel lines are likely to be present nearby in an urban
scene, where buildings are often parallel to each other, as are ancillary structures,
such as roads, sidewalks and landscaping.

For such a problem, we suggest that the problems of matching and grouping (i.e.
3-D recovery and object segmentation) not be separated but solved simultaneously.
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The difficulty with matching lower level features is that it is difficult to disambiguate
the matches correctly; the difficulty at the higher levels is that the correct groupings
may not be formed in the first place. We propose a hierarchical grouping scheme
where lower level features are grouped into successively higher level features. At
each level, the grouped structures are matched across the different views and only the
consistent ones are retained. We attempt to recover roof structures first, as they form
the dominant regions of the buildings in the projected images. However, final selec-
tion of roof hypotheses needs to take advantage of the context provided by the visible
walls (which may be different in different views), and by shadows cast by them.

To simplify our task, we restrict the domain of buildings that we work with to
rectilinear structures (i.e. those consisting of rectangular components). Further, we
assume that the roofs are planar and that the walls are vertical. This allows us to
make some predictions about the expected properties of the projected boundaries in
the image. Also we assume that the “camera models” are given, that is we can infer
the epipolar geometry between the views and know the orientation with respect to a
ground frame. Note that we do not require the different views be such that the epi-
polar lines are parallel, nor do we “rectify” the images to parallelize the epipolar lines.

There have been a few previous attempts to detect buildings from multiple
views, though most assume stereo images taken at the same time ([10],[14] and [16]).
It is common to match low-level features, such as lines and junctions, and to attempt
to infer buildings from the matches by some kind of tracing or grouping method. The
system described by Mohan and Nevatia matches higher level hypotheses (rectan-
gles) however, does not use stereo information to form the hypotheses themselves. A
recent system by Jaynes et. al. [17] does deal with the same kinds of imagery that we
do (in fact, we use the same test data). However, the approach in this system is dif-

Figure 6.1 Views of modelboard scene
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ferent in several ways. This system first uses a single view to determine roof outlines.
Matches for these roof outlines are found in other views, and heights are determined
by peaks in a histogram of heights from different pairs of views. This method has
demonstrated very good results on one set of views. However, its performance may be
critically dependent on the ability to generate good hypotheses from a single “seed”
view (apparently a nadir view). This system assumes that the orientation of the sides
of the roofs in the image is known in advance.

6.1 Overview of the System

This system uses a hypothesize-and-verify paradigm. Roof hypotheses are
formed by a hierarchical grouping and matching scheme and verified by using wall
and shadow evidence. A block diagram is given in Figure 6.2. With the restrictions
of rectilinearity in the shapes of the buildings our system is designed for, the roofs can
be expected to project into parallelograms or a combination of them (we assume that
projection is either truly orthographic or is approximately orthographic over the ex-
tent of a building; this is generally true of aerial images taken from a height substan-
tially larger than the heights of the buildings). We form hypotheses for
parallelograms in a hierarchical way, by forming lines, junctions, parallels, “U”s, and
finally, the parallelograms themselves. Evidence from all the views is used to gener-
ate the groupings and the process is not dependent on the order in which the views
are examined. Matching takes place at various levels, and the results of matching at
one stage are used for grouping at the higher levels. At each stage, some selections
are made but the process is only intended to remove the hypotheses that become un-
viable with the increasing availability of context; at each stage, multiple hypotheses
may remain even after selection.

Each hypotheses that is selected as being a candidate for being a roof, based on
the evidence formed by features in the multiple views, is then “verified” by looking for
supporting evidence from the walls and the shadows. Since we know the roof hypoth-
eses in 3-D, we can predict the locations of the lines forming the wall boundaries as
well as the shadows on ground (ground is assumed to be flat, though other kinds of
known terrain could be included). Hypotheses with sufficient combined evidence form
the output descriptions of our system. Our system does have the ability of providing
confidence values for each object which may be useful for subsequent processes or hu-
mans that need to exploit the results. The confidence values are calculated based on
the extent and accuracy of detected vertical walls and shadows cast by the roof, com-
pared to their predicted locations. '

6.2 Results and Future Work

Figure 6.3 shows the results obtained on the images shown in figure 6.1. Our
system is able to correctly detect 13 of the 16 buildings in this scene. The missed
buildings have dark roofs whose boundaries are not distinguishable from the shadows
they cast. We are in the process of further testing, evaluation and enhancement of
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Figure 6.2 Flowchart of the system.

this system. We believe that our hierarchical approach has strong advantages and a
potential for providing a highly robust and reliable system. We expect to show more
extensive results in our next report.

Figure 6.3 Verified buildings.
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